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1. Introduction
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4. Results: Frictional Stability

6. Negative b value and dilation hardening: is there a link? 
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3. Results: Friction and Permebility
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5. Discussion: Integration of Frictional Stability and Microstructures

Fault earthquake potential depends on its hydrological and me-
chanical properties. Mature fault zones, which often host earth-
quakes, are hetereogeous in composition.
- How does fault permeability couple with fault frictional stability?
- How does compositional heterogeneity influence fault hy-
dro-mechanics?

Double-direct-shear experiments on 
mixtures of quartz and shale gouge.

3 different stress conditions:
- σ’n = 7 MPa (λ=Pf /σ’n = 0.4)
- σ’n = 10 MPa (λ=Pf /σ’n = 0.7)
- σ’n = 20 MPa (λ=Pf /σ’n = 0.4)

We measured friction, frictional stability 
and permeability.
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50 % SHALE - 70 % SHALE

100 % SHALE

Experimental procedure: 10 µm/s run-in, constant-head and oscillations per-
meability measurements, 1-3-10-30-100-300 µm/s velocity-step sequence. 

We measured the amount of layer dilation in respose to velocity steps, as a 
proxy for gouge volumetric deformation. 

Friction and permeability both decrease with increasing shale content.
Permebility decreases with increasing effective normal stress.

The evolution effect b clearly evolves 
as a function of shale content and 
shear velocity. Negative b values 
emerge with increasing shale content, 
with the first values observed at 50% 
shale and high shear velocities.

The rate-and-state parameter (a-b) cle-
arly evolves as a function of shale con-
tent and shear velocity. Positive (a-b) 
values are observed at >50% shale 
content, particularly at high shear velo-
cities. 

Dilation in response to a velocity 
up-step decreases with increasing shale 
content. The shear velocity dependence 
changes according to the composition 
≤30%-shale gouge dilates more at 
higher shear velocities; ≥50%-shale 
gouge dilates less at higher shear velo-
cit   

≤30%-shale gouge deve-
lops a network of quartz 
grains that controls the 
deformation. This results 
in more positive dilation 
rates, leading to positive 
b values and negative 
(a-b) values.

With increasing shale 
content, the deformation 
is progressively more lo-
calized.
100%-shale gouge 
shows localized shear 
planes where clay mine-
rals are interconnected. 
This results in low µ, po-
sitive (a-b) and low k.
The lower is k, the more 
negative is b value,  and 
the lower is the dilation 
rate.

High (a-b) values, and negative b values characterizes low 
k gouges. Increasing the shale content from 0% to 50% re-
sults in a transition from drained to undrained conditions. 
We infer that in response to a velocity increase a clay-rich 
gouge would experince a drop in fluid pressure, thus dila-
tion hardening occurs, leading to negative b values.


